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Very well approximable vectors

Definition

A vector x ∈ Rd is very well approximable if there exists ε > 0
such that for infinitely many p/q ∈ Qd ,∥∥∥∥x− p

q

∥∥∥∥ ≤ 1

q1+1/d+ε
·

Example

Roth’s theorem states that no algebraic irrational number in R
is very well approximable. Its higher-dimensional generalization
(a corollary of Schmidt’s subspace theorem) says that an
algebraic vector in Rd is very well approximable if and only if it
is contained in an affine rational subspace of Rd .
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Dynamical interpretation

Theorem (Kleinbock–Margulis ’99)

Let

gt =

[
et/d Id

e−t

]
, ux =

[
Id −x

1

]
,

Λ∗ = Zd+1 ∈ Ωd+1 = {unimodular lattices in Rd+1}.

Then x is very well approximable if and only if

lim sup
t→∞

1

t
distΩd+1

(Λ∗, gtuxΛ∗) > 0.
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Extremal measures

A measure on Rd is called extremal if it gives full measure to
the set of not very well approximable vectors.

Example (Corollary of Borel–Cantelli)

Lebesgue measure on Rd is extremal.

Conjecture (Mahler ’32, proven by Sprindžuk ’64)

Lebesgue measure on {(x , x2, . . . , xd) : x ∈ R} is extremal.

Conjecture (Sprindžuk ’80, proven by Kleinbock–Margulis ’98)

Lebesgue measure on any real-analytic manifold not contained
in an affine hyperplane is extremal.
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Extremality and dynamically defined measures:
First results

Theorem (Klenbock–Lindenstrauss–Weiss ’04)

Let Λ be the limit set of a finite iterated function system
generated by similarities and satisfying the open set condition,
and let δ = dimH(Λ). Suppose that Λ is not contained in any
affine hyperplane. Then Hδ � Λ is extremal.

Theorem (Urbański ’05)

Same is true if “similarities” is replaced by “conformal maps”,
and if Hδ � Λ is replaced by “the Gibbs measure of a Hölder
continuous potential function”.
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Extremality and dynamically defined measures:
First results

Theorem (Stratmann–Urbański ’06)

Let G be a convex-cocompact Kleinian group whose limit set is
not contained in any affine hyperplane. Then the
Patterson–Sullivan measure of G is extremal.

Theorem (Urbański ’05 + Markov partition argument)

Let T : Ĉ→ Ĉ be a hyperbolic (i.e. expansive on its Julia set)
rational function, let φ : Ĉ→ R be a Hölder continuous
potential function, and let µφ be the corresponding Gibbs
measure. If Supp(µφ) is not contained in an affine hyperplane,
then µφ is extremal.
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Friendly and absolutely friendly measures

These theorems in fact all prove a stronger condition than
extremality, namely friendliness.

Definition (Kleinbock–Lindenstrauss–Weiss ’04)

A measure µ is called friendly (resp. absolutely friendly) if:

µ is doubling and gives zero measure to every hyperplane.

There exist C1, α > 0 such that for every ball B = B(x, ρ)
with x ∈ Supp(µ), for every 0 < β ≤ 1, and for every
hyperplane L ⊆ Rd ,

µ
(
N (L, β ess sup

B
d(·,L)) ∩ B

)
≤ C1β

αµ(B) (decaying)

resp.

µ
(
N (L, βρ) ∩ B

)
≤ C1β

αµ(B) (absolutely decaying)
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Friendly and absolutely friendly measures

Theorem (Kleinbock–Lindenstraus–Weiss ’04)

Every friendly measure is extremal.

Theorem (Kleinbock–Lindenstraus–Weiss ’04)

If Φ : Rk → Rd is a real-analytic embedding whose image is not
contained in any affine hyperplane, then Φ sends absolutely
friendly measures to friendly measures.

Theorem (Folklore)

If δ > d − 1, then every Ahlfors δ-regular measure on Rd is
absolutely friendly.

Philosophical meta-theorem: Every Ahlfors regular “nonplanar”
measure is absolutely friendly.
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Philosophical issues with friendliness/absolute
friendliness

Although we have seen several measures from dynamics which
are friendly or absolutely friendly, it seems that “most” such
measures are not friendly. Intuitively, this is because the
friendliness condition compares the measures of sets on similar
length scales, while for any given dynamical system, the
behavior of a measure at a given length scale may be heavily
dependent on location.

To solve this problem, it is better to
compare the behavior of a measure at significantly different
length scales, to allow an “averaging effect” to take place,
making the effect of location mostly irrelevant.
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Extremal measures which are not necessarily
friendly

All subsequent results are from Das–Fishman–S.–Urbański
(preprint 2015) unless otherwise noted.

Theorem

If δ > d − 1, then every exact dimensional measure on Rd of
dimension δ is extremal.

Definition

A measure µ is called exact dimensional of dimension δ if for
µ-a.e. x ∈ Rd ,

lim
ρ↘0

logµ
(
B(x, ρ)

)
log ρ

= δ.

Example (Barreira–Pesin–Schmeling ’99)

Any measure ergodic, invariant, and hyperbolic with respect to
a diffeomorphism is exact dimensional.
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Invariant measures of one-dimensional dynamical
systems

When d = 1, d − 1 = 0, so every exact dimensional measure
on R of positive dimension is extremal.

Theorem (Hofbauer ’95)

Let T : [0, 1]→ [0, 1] be a piecewise monotonic transformation
whose derivative has bounded p-variation for some p > 0. Let
µ be a measure on [0, 1] which is ergodic and invariant with
respect to T . Let h(µ) and χ(µ) denote the entropy and
Lyapunov exponent of µ, respectively. If χ(µ) > 0, then µ is
exact dimensional of dimension

δ(µ) =
h(µ)

χ(µ)
·

So if h(µ) > 0, then µ is extremal.
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Positive entropy assumption

The positive entropy assumption is necessary, as shown by the
following example:

Theorem

Let T : X → X be a hyperbolic toral endomorphism, where
X = Rd/Zd (e.g. Tx = nx (mod 1) for some n ≥ 2). Let
MT (X ) be the space of T -invariant probability measures on X .
Then the set of non-extremal measures is comeager in MT (X ).
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Gibbs states of CIFSes

Theorem

Fix d ∈ N, and let (ua)a∈A be an irreducible CIFS on Rd . Let
φ : AN → R be a summable locally Hölder continuous potential
function, let µφ be a Gibbs measure of φ, and let π : AN → Rd

be the coding map. Suppose that the Lyapunov exponent

χµφ :=

∫
log(1/|u′ω1

(π ◦ σ(ω))|) dµφ(ω) (1)

is finite. Then π∗[µφ] is quasi-decaying.

The improvements on Urbański ’05 are twofold:

The CIFS can be infinite, as long as the Lyapunov
exponent is finite.

The open set condition is no longer needed.
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Finite Lyapunov exponent assumption

The necessity of the finite Lyapunov exponent assumption is
demonstrated by the following example:

Theorem (Fishman–S.–Urbański ’14)

There exists a set I ⊆ N such that if µ is the conformal
measure of the CIFS (un(x) = 1

n+x )n∈I , then µ is not extremal.

Another connection between the finite Lyapunov exponent
condition and extremality appears in the following theorem:

Theorem (Fishman–S.–Urbański ’14)

If µ is a probability measure on [0, 1] \ Q invariant with finite
Lyapunov exponent under the Gauss map, then µ is extremal.
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Patterson–Sullivan measures

Theorem

Let G be a geometrically finite group of Möbius
transformations of Rd which does not preserve any affine
hyperplane. Then the Patterson–Sullivan measure of G is
extremal. If G also does not preserve any sphere, then the
Patterson–Sullivan measure is friendly, and is absolutely
friendly if and only if all cusps have maximal rank.

Remark

The first part of this theorem (extremality) is easier to prove
than the second part (friendliness).
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Gibbs states of rational functions via inducing

Definition (Inoquio-Renteria + Rivera-Letelier, ’12)

If T : X → X is a dynamical system, then a potential function
φ : X → R is called hyperbolic if there exists n ∈ N such that
sup(Snφ) < P(T n, Snφ), where P(T , φ) is the pressure of φ
with respect to T .

Theorem

Let T : Ĉ→ Ĉ be a rational function, let φ : Ĉ→ R be a
Hölder continuous hyperbolic potential function, and let µφ be
the Gibbs measure of (T , φ). If the Julia set of T is not
contained in an affine hyperplane, then µφ is extremal.

Proof uses the “fine inducing” technique of
Szostakiewicz–Urbański–Zdunik (preprint 2011).
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Quasi-decaying and weakly quasi-decaying
measures

As before, all our theorems prove more than extremality:

Definition

A finite measure µ is called weakly quasi-decaying (resp.
quasi-decaying) if for every ε > 0 there exists E ⊆ Rd with
µ(Rd \ E ) ≤ ε such that for all x ∈ E and γ > 0, there exist
C1, α > 0 such that for all 0 < ρ ≤ 1, 0 < β ≤ ργ , and affine
hyperplane L ⊆ Rd , if B = B(x, ρ) then

µ

(
N (L, β ess sup

B
d(·,L)) ∩ B ∩ E

)
≤ C1β

αµ(B) (weak QD)

resp.
µ (N (L, βρ) ∩ B ∩ E ) ≤ C1β

αµ(B) (QD)
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Differences between (weak) quasi-decay and
(absolute) friendliness

The main difference between our conditions and those of
Kleinbock–Lindenstrauss–Weiss is the restriction β ≤ ργ , which
makes our condition cover a larger class of measures. It makes
precise the earlier intuitive notion that any criterion on a
measure should consider “significantly different length scales”.

Other differences between our conditions and KLW’s are that
we consider measure-theoretically valid bounds rather than
bounds that hold uniformly, and that we do not assume that
our measures are doubling. The reason we do not need a
doubling assumption is that we prove an “almost doubling”
criterion that holds for all measures on Rd .
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Differences between (weak) quasi-decay and
(absolute) friendliness

The following implications hold:

Absolutely friendly ⇒ Friendly
⇓ ⇓

Quasi-decaying ⇒ Weakly quasi-decaying

⇓
Extremal

Also, the image of an absolutely friendly (resp. quasi-decaying)
measure under a nondegenerate embedding is friendly (resp.
weakly quasi-decaying).
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Examples of measures in various categories

Absolutely friendly
Friendly but not

absolutely friendly
Not friendly

QD

• Patterson–Sullivan
measures of

convex-cocompact groups

• Gibbs measures of
finite IFSes

and hyperbolic
rational functions

• Patterson–Sullivan
measures of

geometrically finite
groups which satisfy

kmin < d − 1

• Gibbs measures
of nonplanar infinite IFSes

and rational functions

WQD\QD Impossible
• Lebesgue measures

of nondegenerate
manifolds

• Conformal measures of
infinite IFSes which

have invariant spheres

Extr\WQD Impossible Impossible

• Measures with finite
Lyapunov exponent and

zero entropy under
the Gauss map

Not Extr Impossible Impossible

• Generic invariant measures of
hyperbolic toral endomorphisms

• Certain measures with
infinite Lyapunov exponent

under the Gauss map
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Sketch of a proof

Theorem

Let T : X → X be a hyperbolic toral endomorphism, where
X = Rd/Zd (e.g. Tx = nx (mod 1) for some n ≥ 2). Let
MT (X ) be the space of T -invariant probability measures on X .
Then the set of non-extremal measures is comeager in MT (X ).

Proof. For each n ∈ N, let

Un =
⋃

p/q∈Q
q≥n

B

(
p

q
,

1

qn

)
,

and let Un be the set of all measures µ ∈ MT (X ) such that
µ(Un) > 1− 2−n. The sets Un and Un are both open. By
definition, the set G :=

⋂
n Un contains only very well

approximable numbers.



Extremality
and

dynamically
defined

measures

David
Simmons

Diophantine
preliminaries

First results

Main results

Quasi-
decaying
measures

Sketch of a proof

Theorem

Let T : X → X be a hyperbolic toral endomorphism, where
X = Rd/Zd (e.g. Tx = nx (mod 1) for some n ≥ 2). Let
MT (X ) be the space of T -invariant probability measures on X .
Then the set of non-extremal measures is comeager in MT (X ).

Proof. For each n ∈ N, let

Un =
⋃

p/q∈Q
q≥n

B

(
p

q
,

1

qn

)
,

and let Un be the set of all measures µ ∈ MT (X ) such that
µ(Un) > 1− 2−n.

The sets Un and Un are both open. By
definition, the set G :=

⋂
n Un contains only very well

approximable numbers.



Extremality
and

dynamically
defined

measures

David
Simmons

Diophantine
preliminaries

First results

Main results

Quasi-
decaying
measures

Sketch of a proof

Theorem

Let T : X → X be a hyperbolic toral endomorphism, where
X = Rd/Zd (e.g. Tx = nx (mod 1) for some n ≥ 2). Let
MT (X ) be the space of T -invariant probability measures on X .
Then the set of non-extremal measures is comeager in MT (X ).

Proof. For each n ∈ N, let

Un =
⋃

p/q∈Q
q≥n

B

(
p

q
,

1

qn

)
,

and let Un be the set of all measures µ ∈ MT (X ) such that
µ(Un) > 1− 2−n. The sets Un and Un are both open.

By
definition, the set G :=

⋂
n Un contains only very well

approximable numbers.



Extremality
and

dynamically
defined

measures

David
Simmons

Diophantine
preliminaries

First results

Main results

Quasi-
decaying
measures

Sketch of a proof

Theorem

Let T : X → X be a hyperbolic toral endomorphism, where
X = Rd/Zd (e.g. Tx = nx (mod 1) for some n ≥ 2). Let
MT (X ) be the space of T -invariant probability measures on X .
Then the set of non-extremal measures is comeager in MT (X ).

Proof. For each n ∈ N, let

Un =
⋃

p/q∈Q
q≥n

B

(
p

q
,

1

qn

)
,

and let Un be the set of all measures µ ∈ MT (X ) such that
µ(Un) > 1− 2−n. The sets Un and Un are both open. By
definition, the set G :=

⋂
n Un contains only very well

approximable numbers.



Extremality
and

dynamically
defined

measures

David
Simmons

Diophantine
preliminaries

First results

Main results

Quasi-
decaying
measures

Sketch of a proof

By definition, the set G :=
⋂

n Un contains only very well
approximable numbers. Thus since every measure in
G :=

⋂
n Un gives full measure to G , it follows that no measure

in G is extremal.

To complete the proof, we need to show that
G is dense in MT (X ). Since G is convex, it suffices to show
that the closure of G contains all ergodic measures in MT (X ).
Since T is a hyperbolic toral endomorphism, Bowen’s
Specification Theorem implies that any ergodic measure can be
approximated by measures supported on periodic orbits. But
algebra shows that periodic points are rational points, and
therefore elements of G . Thus measures supported on periodic
orbits are in G , which completes the proof.

Remark

This argument gives another proof that the set of measures
with entropy zero is comeager in MT (X ).
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